

LINXON myRGA THEORY AND OPERATION

Module 200: RGA Theory

- Develop expertise with LINXON myRGA
- Understanding RGA theory is an essential part of learning how RGAs work and how they can be used to meet customer needs

OUTLINE

- Mass-to-Charge Ratio \mathcal{P}
	-
- RGA Sensor Overview 3
- Mass Spectra 4

RGA PURPOSE AND APPLICATIONS OVERVIEW 1

RGA PURPOSE

Determine types and quantities of gases in a system

RGA OVERVIEW OF APPLICATIONS

- Leak detection
- Gas or contaminant identification
- Vacuum system diagnostics
- Process monitoring and control
- Research and development
- Manufacturing
- Quality assurance
- Process efficiency improvement
- Scrap reduction / cost reduction

MASS SPECTROMETRY

- Analytical technique used to identify and measure gases
- Sampled gas pressure can range from ultra-high vacuum to above atmospheric pressure
	- LINXON myRGA can operate at pressure up to 5 x 10⁻⁴ Torr
- High sensitivity to detect extremely small gas concentrations or partial pressures

REQUIREMENT TO IONIZE THE GAS

- RGA needs to:
	- Filter gas particles according to their mass
	- Detect and measure the filtered particle stream
- However, gas particles are neutral
	- Difficult to filter
	- Difficult to measure
- Solution is to ionize the gas
	- Ions have electric charge
	- RGA can filter ions by exerting electric forces on them
	- RGA can measure ion stream by measuring electric current

ION'S CHARGE NUMBER

- An ion is similar to an atom or a molecule, except it has a net charge
- Atom or molecule that loses 1 electron
	- Singly ionized
	- Positive ion
	- Charge number is +1
- Atom or molecule that loses 2 electrons
	- Doubly ionized
	- Positive ion
	- Charge number is +2

Helium ion (He⁺) $z = +1$

Mass-to-Charge Ratio (m/z)

- Essential to a mass spectrometer's ability to independently measure different gas species
- Equal to an ion's mass (m) divided by its charge number (z)
- Basis for filtering ions in an RGA
	- Separate, identify and quantify each gas species in a sample
- Mass-to-charge ratio often shortened to "mass" for convenience
	- Ion's charge number often equal to 1
	- When $z = 1$, mass-to-charge ratio = mass

MEASUREMENT UNITS FOR M/Z MASS-TO-CHARGE RATIO

- amu/e
	- Clearly shows mass divided by charge
	- Mass (amu) divided by charge (e)
- amu
	- Most common
	- Mass (amu) divided by charge number
- No unit of measure (dimensionless)
	- Integer value with no unit of measure
	- Mass number divided by charge number
- Mass-to-charge ratio usually involves integer values
	- Integer values not affected by choice of measurement unit

40 amu/e 40 amu 40

EXAMPLES OF MASS-TO-CHARGE RATIOLINXON

- Singly ionized helium (He⁺)
	- Mass $=$ 4 amu
	- Charge number $= +1$
	- 4 amu / 1 = 4 amu
	- Measurement signal at mass 4 indicates helium
- Singly ionized argon-40 (⁴⁰Ar⁺)
	- Mass $=$ 40 amu
	- Charge number $= +1$
	- 40 amu $/ 1 = 40$ amu
	- Measurement signal at mass 40 typically indicates argon

RGA SENSOR – FUNCTIONAL BLOCKS

- Ion source
- Mass filter
- Detector

ION SOURCE – IONIZES THE GAS

- Gas enters the ion source
- Atoms and molecules inside the ion source are ionized
- Ions are guided out of the ion source and into the mass filter

MASS FILTER -FILTERS THE IONS

- Mass filter
	- Filters ions according to their mass-to-charge ratio
	- Ions with m/z within a specific pass band are passed to the detector
	- Ions with m/z not within the pass band are rejected

DETECTOR – DETECTS THE IONS

- Ion current arrives at the detector
- Detector produces output current proportional to the ion current
- Output signal represents the gas being measured at that time

MASS SPECTRUM

- Graph of current vs. mass-to-charge ratio ("mass")
	- Mass scale (horizontal axis) identifies different ions being detected
	- Current scale (vertical axis) indicates relative amounts

COMMON PEAKS

ARGON EXAMPLES, ISOTOPE PEAKS

- Argon has isotopes $40Ar$, $38Ar$ and $36Ar$
- Spectrum can be normalized
	- Scale highest peak, ⁴⁰Ar⁺, to 100%
	- ³⁶Ar⁺ peak height is 0.3% of the peak height at mass 40
	- Allows user to monitor argon at mass 36 to reduce ion current striking detector

ARGON EXAMPLES, DOUBLY IONIZED PEAKS

- Doubly ionized, charge number $= 2$
	- 3 isotopes x 2 ionization states = 6 peaks
	- Argon peak at m/z 18 can interfere with water peak at m/z 18
	- Argon peak at m/z 19 can interfere with fluorine peak at m/z 19

CRACKING PATTERS – WATER EXAMPLE

- Molecules can break into smaller fragments during ionization
- For example, water molecules can break into smaller fragments
- Typical mass spectrum for water

SPECTRA LIBRARY

- Library of substances and their mass spectra
- Peak locations (amu) and normalized relative peak heights (%)

SPECTRUM GUIDE

Possible source gases are shown for each m/z listed

SUMMARY

- Vacuum diagnostics are important for quality and efficiency in both manufacturing and research
- LINXON contributes by providing RGAs that measure gases with high sensitivity to detect extremely small partial pressures
- Within the RGA, gas is ionized and the measured quantity is the ion current as a function of ion mass-to-charge ratio
- Basic analysis of gas composition commonly is performed by examining peaks at masses such as 2, 4, 18, 28, 32 and 40
- For a more precise analysis, one should consider the detailed mass spectrum of each substance present

THANK YOU!

You have completed the **RGA Theory module!**

You may come back and review the content of this module at any time.