

LINXON myRGA THEORY AND OPERATION

Module 200: RGA Theory

- Develop expertise with LINXON myRGA
- Understanding RGA theory is an essential part of learning how RGAs work and how they can be used to meet customer needs

3

OUTLINE

- RGA Purpose and Applications Overview
- Mass-to-Charge Ratio 2
- 3
 - **RGA Sensor Overview**
- Mass Spectra 4

1RGA PURPOSE AND1APPLICATIONS OVERVIEW

RGA PURPOSE

Determine types and quantities of gases in a system

RGA OVERVIEW OF APPLICATIONS

- Leak detection
- Gas or contaminant identification
- Vacuum system diagnostics
- Process monitoring and control
- Research and development
- Manufacturing
- Quality assurance
- Process efficiency improvement
- Scrap reduction / cost reduction

MASS SPECTROMETRY

- Analytical technique used to identify and measure gases
- Sampled gas pressure can range from ultra-high vacuum to above atmospheric pressure
 - LINXON myRGA can operate at pressure up to 5 x 10⁻⁴ Torr
- High sensitivity to detect extremely small gas concentrations or partial pressures

REQUIREMENT TO IONIZE THE GAS

- RGA needs to:
 - Filter gas particles according to their mass
 - Detect and measure the filtered particle stream
- However, gas particles are neutral
 - Difficult to filter
 - Difficult to measure
- Solution is to ionize the gas
 - Ions have electric charge
 - RGA can filter ions by exerting electric forces on them
 - RGA can measure ion stream by measuring electric current

ION'S CHARGE NUMBER

- An ion is similar to an atom or a molecule, except it has a net charge
- Atom or molecule that loses 1 electron
 - Singly ionized
 - Positive ion
 - Charge number is +1
- Atom or molecule that loses 2 electrons
 - Doubly ionized
 - Positive ion
 - Charge number is +2

Helium ion (He⁺) z = +1

Mass-to-Charge Ratio (m/z)

- Essential to a mass spectrometer's ability to independently measure different gas species
- Equal to an ion's mass (m) divided by its charge number (z)
- Basis for filtering ions in an RGA
 - Separate, identify and quantify each gas species in a sample
- Mass-to-charge ratio often shortened to "mass" for convenience
 - Ion's charge number often equal to 1
 - When z = 1, mass-to-charge ratio = mass

MEASUREMENT UNITS FOR M/Z MASS-TO-CHARGE RATIO

- amu/e
 - Clearly shows mass divided by charge
 - Mass (amu) divided by charge (e)
- amu
 - Most common
 - Mass (amu) divided by charge number
- No unit of measure (dimensionless)
 - Integer value with no unit of measure
 - Mass number divided by charge number
- Mass-to-charge ratio usually involves integer values
 - Integer values not affected by choice of measurement unit

40 amu/e 40 amu 40

EXAMPLES OF MASS-TO-CHARGE RATIO

- Singly ionized helium (He⁺)
 - Mass = 4 amu
 - Charge number = +1
 - 4 amu / 1 = 4 amu
 - Measurement signal at mass 4 indicates helium
- Singly ionized argon-40 (⁴⁰Ar⁺)
 - Mass = 40 amu
 - Charge number = +1
 - 40 amu / 1 = 40 amu
 - Measurement signal at mass 40 typically indicates argon

RGA SENSOR – FUNCTIONAL BLOCKS

- Ion source
- Mass filter
- Detector

lon source

Mass filter

Detector

ION SOURCE – IONIZES THE GAS

- Gas enters the ion source
- Atoms and molecules inside the ion source are ionized
- Ions are guided out of the ion source and into the mass filter

MASS FILTER -FILTERS THE IONS

- Mass filter
 - Filters ions according to their mass-to-charge ratio
 - Ions with m/z within a specific pass band are passed to the detector
 - Ions with m/z not within the pass band are rejected

DETECTOR – DETECTS THE IONS

- Ion current arrives at the detector
- Detector produces output current proportional to the ion current
- Output signal represents the gas being measured at that time

MASS SPECTRUM

- Graph of current vs. mass-to-charge ratio ("mass")
 - Mass scale (horizontal axis) identifies different ions being detected
 - Current scale (vertical axis) indicates relative amounts

COMMON PEAKS

Gas	Primary ion	Mass
Hydrogen (H ₂)	H ₂ ⁺	2 amu
Helium (He)	He⁺	4 amu
Water (H ₂ O)	H ₂ O ⁺	18 amu
Nitrogen (N ₂)	N ₂ ⁺	28 amu
Oxygen (O ₂)	0 ₂ +	32 amu
Argon (Ar)	Ar ⁺	40 amu

ARGON EXAMPLES, ISOTOPE PEAKS

- Argon has isotopes ⁴⁰Ar, ³⁸Ar and ³⁶Ar
- Spectrum can be normalized
 - Scale highest peak, ⁴⁰Ar⁺, to 100%
 - ³⁶Ar⁺ peak height is 0.3% of the peak height at mass 40
 - Allows user to monitor argon at mass 36 to reduce ion current striking detector

		Normalized
lon	m/z	Amplitude
⁴⁰ Ar ⁺	40	100%
³⁶ Ar ⁺	36	0.3%
³⁸ Ar ⁺	38	< 0.1%

ARGON EXAMPLES, DOUBLY IONIZED PEAKS

Module 200: RGA Theory

- 3 isotopes x 2 ionization states = 6 peaks
- Argon peak at m/z 18 can interfere with water peak at m/z 18
- Argon peak at m/z 19 can interfere with fluorine peak at m/z 19

				Normalized
lon	m	Z	m/z	Amplitude
⁴⁰ Ar ⁺	40	1	40	100%
⁴⁰ Ar ⁺⁺	40	2	20	14.6%
³⁶ Ar ⁺	36	1	36	0.3%
³⁶ Ar ⁺⁺	36	2	18	< 0.1%
³⁸ Ar ⁺	38	1	38	< 0.1%
³⁸ Ar ⁺⁺	38	2	19	< 0.1%

LINXON

- Molecules can break into smaller fragments during ionization
- For example, water molecules can break into smaller fragments
- Typical mass spectrum for water

lon	Mass/Charge	Normalized Amplitude
H_2O^+	18	100%
OH⁺	17	25%
O+	16	2%
H_2^+	2	2%
H+	1	6%

SPECTRA LIBRARY

- Library of substances and their mass spectra
- Peak locations (amu) and normalized relative peak heights (%)

Substance	Formula	1	2	3	4	5	6
Acetic acid	C ₆ H ₁₂ O ₂	43/100	56/44	61/15	41/15	73/14	55/7
Acetone	C ₃ H ₆ O	43/100	15/42	58/20	14/10	27/9	42/8
Acetylene	C ₂ H ₂	26/100	25/20	13/6	27/3	12/3	
Air		28/100	32/27	14/14	16/3	40/1	
Ammonia	NH ₃	17/100	16/80	15/8	14/2		
Argon	Ar	40/100	20/10				
Arsine	H ₃ As	76/100	78/92	75/39	77/29		
Benzene	C ₆ H ₆	78/100	77/22	51/18	50/17	52/15	39/10
Benzene, chloro	C ₆ H₅CI	77/100	112/89	51/57	50/48	38/31	114/25
Borane, trichloro	BCl ₃	81/100	83/63	35/30	80/25	116/23	118/23
Borane, trifluoro	BF ₃	49/100	11/6	19/4	30/3	68/2	20/1
Butane	C ₄ H ₁₀	43/100	29/44	27/37	28/33	41/28	39/13
Carbon dioxide	CO ₂	44/100	28/15	12/14	16/9	22/3	45/1

SPECTRUM GUIDE

Possible source gases are shown for each m/z listed

AMU	ION(S)	SOURCE(S)
1	н	Hydrogen, Water, Acids, HY
2	H ₂	Hydrogen
	D	Deuterium
3	HD	Hydrogen – Deuterium
	He	³ Helium
4	He	Helium
6	С	DI Carbon
7	N	DI Nitrogen
8	0	DI Oxygen
10	Ne	DI Neon
11	Ne	DI ²² Neon
12	С	Carbon dioxide or monoxide, HY, HL
13	СН	Methane, HY
14	CH ₂	Methane, HY
	N	Nitrogen, Ammonia
15	CH3	Methane, HY
	NH	Ammonia

AMU	ION(S)	SOURCE(S)
19	F	Fluorine, Hydrofluoric acid, HL, Silicon tetrafluoride, PFK, PFTBA
20	HF	Hydrofluoric acid
	Ar	DI Argon
	Ne	Neon
22	Ne	22 _{Neon}
	co ₂	DI Carbon dioxide
24	с ₂	HL, HY
25	с ₂ н	HY
	CF ₂	HL, DI CF ₂
26	с ₂ н ₂	HY
	CN	Hydrogen cyanide
27	с ₂ н ₃	HY
	HCN	Hydrogen cyanide
28	с ₂ н ₄	HY
	со	Carbon dioxide or monoxide
	N ₂	Nitrogen, Air

SUMMARY

- Vacuum diagnostics are important for quality and efficiency in both manufacturing and research
- LINXON contributes by providing RGAs that measure gases with high sensitivity to detect extremely small partial pressures
- Within the RGA, gas is ionized and the measured quantity is the ion current as a function of ion mass-to-charge ratio
- Basic analysis of gas composition commonly is performed by examining peaks at masses such as 2, 4, 18, 28, 32 and 40
- For a more precise analysis, one should consider the detailed mass spectrum of each substance present

THANK YOU!

You have completed the **RGA Theory module!**

You may come back and review the content of this module at any time.